Additional functions¶
- calorine.tools.analyze_data(data, max_lag=None)[source]¶
Carries out an extensive analysis of the data series.
- Parameters:
data (
ndarray
) – data series to compute autocorrelation function formax_lag (
Optional
[int
]) – maximum lag between two data points, used for computing autocorrelation
- Returns:
calculated properties of the data including, mean, standard deviation, correlation length and a 95% error estimate.
- Return type:
dict
- calorine.tools.get_autocorrelation_function(data, max_lag=None)[source]¶
Returns autocorrelation function.
The autocorrelation function is computed using pandas.Series.autocorr.
- calorine.tools.get_correlation_length(data)[source]¶
Returns estimate of the correlation length of data.
The correlation length is taken as the first point where the autocorrelation functions is less than \(\exp(-2)\). If the correlation function never drops below \(\exp(-2)\)
np.nan
is returned.If the correlation length cannot be computed since the auto-correlation function is unconverged the function returns None.
- Parameters:
data (
ndarray
) – data series for which to the compute autocorrelation function- Return type:
Optional
[int
]- Returns:
correlation length
- calorine.tools.get_elastic_stiffness_tensor(structure, clamped=False, epsilon=0.001, **kwargs)[source]¶
Calculate and return the elastic stiffness tensor in units of GPa for the given structure in Voigt form.
- Parameters:
structure (
Atoms
) – input structure; should be fully relaxedclamped (
bool
) – ifFalse
(default) return the relaxed elastic stiffness tensor; ifTrue
return the clamped ion elastic stiffness tensorepsilon (
float
) – magnitude of the applied strainkwargs – keyword arguments forwarded to the
relax_structure
function used for relaxing the structure when computing the relaxed stiffness tensor; it should not be necessary to change the default for the vast majority of use cases; use with care
- Return type:
Stiffness tensor in units of GPa
- calorine.tools.get_error_estimate(data, confidence=0.95)[source]¶
Returns estimate of standard error \(\mathrm{error}\) with confidence interval.
\[\mathrm{error} = t_\mathrm{factor} * \mathrm{std}(\mathrm{data}) / \sqrt{N_s}\]where \(t_{factor}\) is the factor corresponding to the confidence interval and \(N_s\) is the number of independent measurements (with correlation taken into account).
If the correlation length cannot be computed since the auto-correlation function is unconverged the function returns None.
- Parameters:
data (
ndarray
) – data series for which to estimate the error- Return type:
Optional
[float
]- Returns:
error estimate
- calorine.tools.get_force_constants(structure, calculator, supercell_matrix, kwargs_phonopy={}, kwargs_generate_displacements={})[source]¶
Calculates the force constants for a given structure using phonopy, which needs to be cited if this function is used for generating data for publication. The function returns a Phonopy object that can be used to calculate, e.g., the phonon dispersion, the phonon density of states as well as related quantities such as the thermal displacements and the free energy.
- Parameters:
structure (
Atoms
) – structure for which to compute the phonon dispersion; usually this is a primitive cellcalculator (
SinglePointCalculator
) – ASE calculator to use for the calculation of forcessupercell_matrix (
ndarray
) – specification of supercell size handed over to phonopy; should be a tuple of three values or a matrixkwargs_phonopy (
Dict
[str
,Any
]) – Expert option: keyword arguments used when initializing the Phonopy object; this includes, e.g., the tolerance used when determining the symmetry (symprec) and parameters for the non-analytical corrections (nac_params)kwargs_generate_displacements (
Dict
[str
,Any
]) – Expert option: keyword arguments to be handed over to the generate_displacements method; this includes in particular the distance keyword, which specifies the magnitude of the atomic displacement imposed when calculating the force constant matrix
- Return type:
Phonopy
- calorine.tools.get_rtc_from_hac(hac, V, T, dt)[source]¶
Returns the running thermal conductivity (RTC) in W/m/K using a heat auto-correlation (HAC) as input.
- calorine.tools.relax_structure(structure, fmax=0.001, steps=500, minimizer='bfgs', constant_cell=False, constant_volume=False, **kwargs)[source]¶
Relaxes the given structure.
- Parameters:
structure (
Atoms
) – atomic configuration to relaxfmax (
float
) – if the absolute force for all atoms falls below this value the relaxation is stoppedsteps (
int
) – maximum number of relaxation steps the minimizer is allowed to takeminimizer (
str
) – minimizer to use; possible values: ‘bfgs’, ‘lbfgs’, ‘fire’, ‘gpmin’, ‘bfgs-scipy’constant_cell (
bool
) – if True do not relax the cell or the volumeconstant_volume (
bool
) – if True relax the cell shape but keep the volume constantkwargs – keyword arguments to be handed over to the minimizer; possible arguments can be found in the ASE documentation
- Return type:
None