Source code for calorine.tools.stiffness

from itertools import combinations_with_replacement, product
import numpy as np
from ase import Atoms
from ase.units import GPa
from .structures import relax_structure


[docs] def get_elastic_stiffness_tensor(structure: Atoms, clamped: bool = False, epsilon: float = 1e-3, **kwargs) -> np.ndarray: """Calculate and return the elastic stiffness tensor in units of GPa for the given structure in `Voigt form <https://en.wikipedia.org/wiki/Voigt_notation>`_. Parameters ---------- structure input structure; should be fully relaxed clamped if ``False`` (default) return the *relaxed* elastic stiffness tensor; if ``True`` return the *clamped ion* elastic stiffness tensor epsilon magnitude of the applied strain kwargs keyword arguments forwarded to the :func:`relax_structure <calorine.tools.relax_structure>` function used for relaxing the structure when computing the relaxed stiffness tensor; it should not be necessary to change the default for the vast majority of use cases; use with care Returns ------- Stiffness tensor in units of GPa """ # set up of deformations deformations = [] for i, j in combinations_with_replacement(range(9), r=2): for s1, s2 in product([-1, 1], repeat=2): S = np.zeros((3, 3)) S.flat[i] = s1 S.flat[j] = s2 deformations.append(S) deformations = np.array(deformations) deformations *= epsilon # compute strain energies reference_energy = structure.get_potential_energy() energies = [] for S in deformations: cell = structure.get_cell() cell += cell @ S.T deformed_structure = structure.copy() deformed_structure.calc = structure.calc deformed_structure.set_cell(cell, scale_atoms=True) if not clamped: relax_structure(deformed_structure, constant_cell=True, **kwargs) energy = deformed_structure.get_potential_energy() energies.append(energy - reference_energy) energies = np.array(energies) # extract stiffness tensor (full rank) SS = np.einsum('nij,nkl->nijkl', deformations, deformations) M = SS.reshape(len(SS), -1) M *= 0.5 C, *_ = np.linalg.lstsq(M, energies, rcond=None) C = C.reshape(3, 3, 3, 3) C /= (structure.cell.volume * GPa) # convert stiffness tensor to Voigt form voigts = np.array([1, 1, 2, 2, 3, 3, 2, 3, 3, 1, 1, 2]).reshape(-1, 2) - 1 Cv = np.zeros((6, 6)) for i, j in product(range(6), repeat=2): v1 = voigts[i] v2 = voigts[j] Cv[i, j] = C[(*v1, *v2)] return Cv