Source code for calorine.nep.nep

import contextlib
import os
import warnings
from pathlib import Path
from typing import List, Optional, Tuple, Union

import numpy as np
from ase import Atoms

import _nepy
from calorine.nep.model import _get_nep_contents


def _get_atomic_properties(
    structure: Atoms,
) -> Tuple[List[float], List[str], List[float]]:
    """Fetches cell, symbols and positions for a structure. Since NEP_CPU requires a cell, if the
    structure has no cell a default cubic cell with a side of 100 Å will be used.

    Parameters
    ----------
    structure
        Atoms object representing the structure.

    Returns
    -------
    List[float]
        Cell vectors
    List[str]
        Atomic species
    List[float]
        Atom positions
    List[float]
        Atom masses
    """
    if structure.cell.rank == 0:
        warnings.warn('Using default unit cell (cubic with side 100 Å).')
        set_default_cell(structure)

    c = structure.get_cell(complete=True).flatten()
    cell = [c[0], c[3], c[6], c[1], c[4], c[7], c[2], c[5], c[8]]

    symbols = structure.get_chemical_symbols()
    positions = list(
        structure.get_positions().T.flatten()
    )  # [x1, ..., xN, y1, ... yN,...]
    masses = structure.get_masses()
    return cell, symbols, positions, masses


def _setup_nepy(
    model_filename: str,
    natoms: int,
    cell: List[float],
    symbols: List[str],
    positions: List[float],
    masses: List[float],
    debug: bool,
) -> _nepy.NEPY:
    """Sets up an instance of the NEPY pybind11 interface to NEP_CPU.

    Parameters
    ----------
    model_filename
        Path to model.
    natoms:
        Number of atoms in the structure.
    cell:
        Cell vectors.
    symbols:
        Atom species.
    positions:
        Atom positions.
    masses:
        Atom masses.
    debug:
        Flag to control if the output from NEP_CPU will be printed.

    Returns
    -------
    NEPY
        NEPY interface
    """
    # Ensure that `model_filename` exists to avoid segfault in pybind11 code
    if not os.path.isfile(model_filename):
        raise ValueError(f'{Path(model_filename)} does not exist')

    # Disable output from C++ code by default
    if debug:
        nepy = _nepy.NEPY(model_filename, natoms, cell, symbols, positions, masses)
    else:
        with open(os.devnull, 'w') as f:
            with contextlib.redirect_stdout(f):
                with contextlib.redirect_stderr(f):
                    nepy = _nepy.NEPY(
                        model_filename, natoms, cell, symbols, positions, masses
                    )
    return nepy


def set_default_cell(structure: Atoms, box_length: float = 100):
    """Adds a cubic box to an Atoms object. Atoms object is edited in-place.

    Parameters
    ----------
    structure
        Structure to add box to
    box_length
        Cubic box side length in Å, by default 100
    """
    structure.set_cell([[box_length, 0, 0], [0, box_length, 0], [0, 0, box_length]])
    structure.center()


[docs] def get_descriptors( structure: Atoms, model_filename: Optional[str] = None, debug: bool = False ) -> np.ndarray: """Calculates the NEP descriptors for a given structure. A NEP model defined by a nep.txt can additionally be provided to get the NEP3 model specific descriptors. Parameters ---------- structure Input structure model_filename Path to NEP model in ``nep.txt`` format. Defaults to ``None``. debug Flag to toggle debug mode. Makes the generated dummy NEP2 model available in a local tmp directory, as well as prints GPUMD output. Defaults to ``False``. Returns ------- Descriptors for the supplied structure, with shape (number_of_atoms, descriptor components) """ local_structure = structure.copy() natoms = len(local_structure) cell, symbols, positions, masses = _get_atomic_properties(local_structure) nepy = _setup_nepy( model_filename, natoms, cell, symbols, positions, masses, debug ) all_descriptors = nepy.get_descriptors() descriptors_per_atom = np.array(all_descriptors).reshape(-1, natoms).T return descriptors_per_atom
[docs] def get_latent_space( structure: Atoms, model_filename: Union[str, None] = None, debug: bool = False ) -> np.ndarray: """Calculates the latent space representation of a structure, i.e, the activiations in the hidden layer. A NEP model defined by a `nep.txt` file needs to be provided. Parameters ---------- structure Input structure model_filename Path to NEP model. Defaults to None. debug Flag to toggle debug mode. Prints GPUMD output. Defaults to False. Returns ------- Activation with shape `(natoms, N_neurons)` """ if model_filename is None: raise ValueError('Model is undefined') local_structure = structure.copy() natoms = len(local_structure) cell, symbols, positions, masses = _get_atomic_properties(local_structure) nepy = _setup_nepy( model_filename, natoms, cell, symbols, positions, masses, debug ) latent = nepy.get_latent_space() latent = np.array(latent).reshape(-1, natoms).T return latent
[docs] def get_potential_forces_and_virials( structure: Atoms, model_filename: Optional[str] = None, debug: bool = False ) -> Tuple[np.ndarray, np.ndarray, np.ndarray]: """Calculates the per-atom potential, forces and virials for a given structure. A NEP model defined by a `nep.txt` file needs to be provided. Parameters ---------- structure Input structure model_filename Path to NEP model. Defaults to None. debug Flag to toggle debug mode. Prints GPUMD output. Defaults to False. Returns ------- potential with shape `(natoms,)` forces with shape `(natoms, 3)` virials with shape `(natoms, 9)` """ if model_filename is None: raise ValueError('Model is undefined') model_type = _get_nep_contents(model_filename)[0]['model_type'] if model_type != 'potential': raise ValueError( 'A NEP model trained for predicting energies and forces must be used.' ) local_structure = structure.copy() natoms = len(local_structure) cell, symbols, positions, masses = _get_atomic_properties(local_structure) nepy = _setup_nepy( model_filename, natoms, cell, symbols, positions, masses, debug ) energies, forces, virials = nepy.get_potential_forces_and_virials() forces_per_atom = np.array(forces).reshape(-1, natoms).T virials_per_atom = np.array(virials).reshape(-1, natoms).T return np.array(energies), forces_per_atom, virials_per_atom
[docs] def get_polarizability( structure: Atoms, model_filename: Optional[str] = None, debug: bool = False, ) -> np.ndarray: """Calculates the polarizability tensor for a given structure. A NEP model defined by a ``nep.txt`` file needs to be provided. The model must be trained to predict the polarizability. Parameters ---------- structure Input structure model_filename Path to NEP model in ``nep.txt`` format. Defaults to ``None``. debug Flag to toggle debug mode. Prints GPUMD output. Defaults to ``False``. Returns ------- polarizability with shape ``(3, 3)`` """ if model_filename is None: raise ValueError('Model is undefined') model_type = _get_nep_contents(model_filename)[0]['model_type'] if model_type != 'polarizability': raise ValueError( 'A NEP model trained for predicting polarizability must be used.' ) local_structure = structure.copy() natoms = len(local_structure) cell, symbols, positions, masses = _get_atomic_properties(local_structure) nepy = _setup_nepy( model_filename, natoms, cell, symbols, positions, masses, debug ) # Components are in order xx yy zz xy yz zx. pol = nepy.get_polarizability() polarizability = np.array([ [pol[0], pol[3], pol[5]], [pol[3], pol[1], pol[4]], [pol[5], pol[4], pol[2]] ]) return polarizability
[docs] def get_dipole( structure: Atoms, model_filename: Optional[str] = None, debug: bool = False, ) -> np.ndarray: """Calculates the dipole for a given structure. A NEP model defined by a ``nep.txt`` file needs to be provided. Parameters ---------- structure Input structure model_filename Path to NEP model in ``nep.txt`` format. Defaults to ``None``. debug Flag to toggle debug mode. Prints GPUMD output. Defaults to ``False``. Returns ------- dipole with shape ``(3,)`` """ if model_filename is None: raise ValueError('Model is undefined') model_type = _get_nep_contents(model_filename)[0]['model_type'] if model_type != 'dipole': raise ValueError('A NEP model trained for predicting dipoles must be used.') local_structure = structure.copy() natoms = len(local_structure) cell, symbols, positions, masses = _get_atomic_properties(local_structure) nepy = _setup_nepy( model_filename, natoms, cell, symbols, positions, masses, debug ) dipole = np.array(nepy.get_dipole()) return dipole
[docs] def get_dipole_gradient( structure: Atoms, model_filename: Optional[str] = None, backend: str = 'c++', method: str = 'central difference', displacement: float = 0.01, charge: float = 1.0, nep_command: str = 'nep', debug: bool = False, ) -> np.ndarray: """Calculates the dipole gradient for a given structure using finite differences. A NEP model defined by a `nep.txt` file needs to be provided. Parameters ---------- structure Input structure model_filename Path to NEP model in ``nep.txt`` format. Defaults to ``None``. backend Backend to use for computing dipole gradient with finite differences. One of ``'c++'`` (CPU), ``'python'`` (CPU) and ``'nep'`` (GPU). Defaults to ``'c++'``. method Method for computing gradient with finite differences. One of 'forward difference' and 'central difference'. Defaults to 'central difference' displacement Displacement in Å to use for finite differences. Defaults to ``0.01``. charge System charge in units of the elemental charge. Used for correcting the dipoles before computing the gradient. Defaults to ``1.0``. nep_command Command for running the NEP executable. Defaults to ``'nep'``. debug Flag to toggle debug mode. Prints GPUMD output (if applicable). Defaults to ``False``. Returns ------- dipole gradient with shape ``(N, 3, 3)`` """ if model_filename is None: raise ValueError('Model is undefined') model_type = _get_nep_contents(model_filename)[0]['model_type'] if model_type != 'dipole': raise ValueError('A NEP model trained for predicting dipoles must be used.') local_structure = structure.copy() if backend == 'c++': dipole_gradient = _dipole_gradient_cpp( local_structure, model_filename, displacement=displacement, method=method, charge=charge, debug=debug, ) elif backend == 'python': dipole_gradient = _dipole_gradient_python( local_structure, model_filename, displacement=displacement, charge=charge, method=method, ) elif backend == 'nep': dipole_gradient = _dipole_gradient_nep( local_structure, model_filename, displacement=displacement, method=method, charge=charge, nep_command=nep_command, ) else: raise ValueError(f'Invalid backend {backend}') return dipole_gradient
def _dipole_gradient_cpp( structure: Atoms, model_filename: str, method: str = 'central difference', displacement: float = 0.01, charge: float = 1.0, debug: bool = False, ) -> np.ndarray: """Calculates the dipole gradient with finite differences, using NEP_CPU. Parameters ---------- structure Input structure model_filename Path to NEP model in ``nep.txt`` format. method Method for computing gradient with finite differences. One of ``'forward difference'`` and ``'central difference'``. Defaults to ``'central difference'`` displacement Displacement in Å to use for finite differences. Defaults to ``0.01``. charge System charge in units of the elemental charge. Used for correcting the dipoles before computing the gradient. Defaults to ``1.0``. Returns ------- dipole gradient with shape ``(N, 3, 3)`` """ if displacement <= 0: raise ValueError('Displacement must be > 0 Å') implemented_methods = { 'forward difference': 0, 'central difference': 1, 'second order central difference': 2, } if method not in implemented_methods.keys(): raise ValueError(f'Invalid method {method} for calculating gradient') local_structure = structure.copy() natoms = len(local_structure) cell, symbols, positions, masses = _get_atomic_properties(local_structure) nepy = _setup_nepy( model_filename, natoms, cell, symbols, positions, masses, debug ) dipole_gradient = np.array( nepy.get_dipole_gradient(displacement, implemented_methods[method], charge) ).reshape(natoms, 3, 3) return dipole_gradient def _dipole_gradient_python( structure: Atoms, model_filename: str, method: str = 'central difference', displacement: float = 0.01, charge: float = 1.0, ) -> np.ndarray: """Calculates the dipole gradient with finite differences, using the Python and get_dipole(). Parameters ---------- structure Input structure model_filename Path to NEP model in ``nep.txt`` format. method Method for computing gradient with finite differences. One of ``'forward difference'`` and ``'central difference'``. Defaults to ``'central difference'`` displacement Displacement in Å to use for finite differences. Defaults to ``0.01``. charge System charge in units of the elemental charge. Used for correcting the dipoles before computing the gradient. Defaults to ``1.0``. Returns ------- dipole gradient with shape ``(N, 3, 3)`` """ if displacement <= 0: raise ValueError('Displacement must be > 0 Å') N = len(structure) if method == 'forward difference': # Correct all dipole by the permanent dipole, charge * center of mass d = ( get_dipole(structure, model_filename) + charge * structure.get_center_of_mass() ) d_forward = np.zeros((N, 3, 3)) for atom in range(N): for cartesian in range(3): copy = structure.copy() positions = copy.get_positions() positions[atom, cartesian] += displacement copy.set_positions(positions) d_forward[atom, cartesian, :] = ( get_dipole(copy, model_filename) + charge * copy.get_center_of_mass() ) gradient = (d_forward - d[None, None, :]) / displacement elif method == 'central difference': d_forward = np.zeros((N, 3, 3)) d_backward = np.zeros((N, 3, 3)) for atom in range(N): for cartesian in range(3): # Forward displacements copy_forward = structure.copy() positions_forward = copy_forward.get_positions() positions_forward[atom, cartesian] += displacement copy_forward.set_positions(positions_forward) d_forward[atom, cartesian, :] = ( get_dipole(copy_forward, model_filename) + charge * copy_forward.get_center_of_mass() ) # Backwards displacement copy_backward = structure.copy() positions_backward = copy_backward.get_positions() positions_backward[atom, cartesian] -= displacement copy_backward.set_positions(positions_backward) d_backward[atom, cartesian, :] = ( get_dipole(copy_backward, model_filename) + charge * copy_backward.get_center_of_mass() ) gradient = (d_forward - d_backward) / (2 * displacement) elif method == 'second order central difference': # Coefficients from # https://en.wikipedia.org/wiki/Finite_difference_coefficient#Central_finite_difference d_forward_one_h = np.zeros((N, 3, 3)) d_forward_two_h = np.zeros((N, 3, 3)) d_backward_one_h = np.zeros((N, 3, 3)) d_backward_two_h = np.zeros((N, 3, 3)) for atom in range(N): for cartesian in range(3): copy = structure.copy() positions = copy.get_positions() # Forward displacements positions[atom, cartesian] += displacement # + h copy.set_positions(positions) d_forward_one_h[atom, cartesian, :] = ( get_dipole(copy, model_filename) + charge * copy.get_center_of_mass() ) positions[atom, cartesian] += displacement # + 2h total copy.set_positions(positions) d_forward_two_h[atom, cartesian, :] = ( get_dipole(copy, model_filename) + charge * copy.get_center_of_mass() ) # Backwards displacement positions[atom, cartesian] -= 3 * displacement # 2h - 3h = -h copy.set_positions(positions) d_backward_one_h[atom, cartesian, :] = ( get_dipole(copy, model_filename) + charge * copy.get_center_of_mass() ) positions[atom, cartesian] -= displacement # - 2h total copy.set_positions(positions) d_backward_two_h[atom, cartesian, :] = ( get_dipole(copy, model_filename) + charge * copy.get_center_of_mass() ) c0 = -1.0 / 12.0 c1 = 2.0 / 3.0 gradient = ( c0 * d_forward_two_h + c1 * d_forward_one_h - c1 * d_backward_one_h - c0 * d_backward_two_h ) / displacement else: raise ValueError(f'Invalid method {method} for calculating gradient') return gradient def _dipole_gradient_nep( structure: Atoms, model_filename: str, method: str = 'central difference', displacement: float = 0.01, charge: float = 1.0, nep_command: str = 'nep', ) -> np.ndarray: """Calculates the dipole gradient with finite differences, using the NEP executable. Parameters ---------- structure Input structure model_filename Path to NEP model in ``nep.txt`` format. method Method for computing gradient with finite differences. One of ``'forward difference'`` and ``'central difference'``. Defaults to ``'central difference'`` displacement Displacement in Å to use for finite differences. Defaults to 0.01 Å. Note that results are possibly unreliable for displacemen < 0.01, which might be due to rounding errors. charge System charge in units of the elemental charge. Used for correcting the dipoles before computing the gradient. Defaults to 1.0. nep_command Command for running the NEP executable. Defaults to ``'nep'``. Returns ------- dipole gradient with shape ``(N, 3, 3)`` """ if displacement <= 0: raise ValueError('Displacement must be > 0 Å') if displacement < 1e-2: warnings.warn( 'Dipole gradients with nep are unstable for displacements < 0.01 Å.' ) N = len(structure) if method == 'forward difference': structure = _set_dummy_energy_forces(structure) structures = [structure] # will hold 3N+1 structures # Correct for the constant dipole, by adding charge * center of mass corrections = np.zeros((3 * N + 1, 3)) corrections[0] = charge * structure.get_center_of_mass() for atom in range(N): for cartesian in range(3): copy = structure.copy() positions = copy.get_positions() positions[atom, cartesian] += displacement copy.set_positions(positions) copy = _set_dummy_energy_forces(copy) structures.append(copy) corrections[1 + atom * 3 + cartesian] = ( charge * copy.get_center_of_mass() ) dipoles = ( _predict_dipole_batch(structures, model_filename, nep_command) * N ) # dipole/atom, shape (3N+1, 3) dipoles += corrections d = dipoles[0, :] d_forward = dipoles[1:].reshape(N, 3, 3) gradient = (d_forward - d[None, None, :]) / displacement elif method == 'central difference': structures_forward = [] # will hold 3N structures structures_backward = [] # will hold 3N structures # Correct for the constant dipole, by adding charge * center of mass corrections_forward = np.zeros((3 * N, 3)) corrections_backward = np.zeros((3 * N, 3)) for atom in range(N): for cartesian in range(3): # Forward displacements copy_forward = structure.copy() positions_forward = copy_forward.get_positions() positions_forward[atom, cartesian] += displacement copy_forward.set_positions(positions_forward) copy_forward = _set_dummy_energy_forces(copy_forward) structures_forward.append(copy_forward) corrections_forward[atom * 3 + cartesian] = ( charge * copy_forward.get_center_of_mass() ) # Backwards displacement copy_backward = structure.copy() positions_backward = copy_backward.get_positions() positions_backward[atom, cartesian] -= displacement copy_backward.set_positions(positions_backward) copy_backward = _set_dummy_energy_forces(copy_backward) structures_backward.append(copy_backward) corrections_backward[atom * 3 + cartesian] = ( charge * copy_backward.get_center_of_mass() ) structures = structures_forward + structures_backward dipoles = ( _predict_dipole_batch(structures, model_filename, nep_command) * N ) # dipole/atom, shape (6N, 3) d_forward = dipoles[: 3 * N, :] d_backward = dipoles[3 * N :, :] d_forward += corrections_forward d_backward += corrections_backward d_forward = d_forward.reshape(N, 3, 3) d_backward = d_backward.reshape(N, 3, 3) gradient = (d_forward - d_backward) / (2 * displacement) else: raise ValueError(f'Invalid method {method} for calculating gradient') return gradient def _set_dummy_energy_forces(structure: Atoms) -> Atoms: """Sets the energies and forces of structure to zero. Parameters ---------- structure Input structure Returns ------- Copy of structure, with SinglePointCalculator with zero energy and force. """ from ase.calculators.singlepoint import SinglePointCalculator copy = structure.copy() N = len(copy) energy = 0 forces = np.zeros((N, 3)) dummy = SinglePointCalculator(copy, **{'energy': energy, 'forces': forces}) copy.calc = dummy return copy def _predict_dipole_batch( structures: List[Atoms], model_filename: str, nep_command: str = 'nep' ) -> np.ndarray: """Predicts dipoles for a set of structures using the NEP executable Note that the units are in (dipole units)/atom. Parameters ---------- structure Input structures model_filename Path to NEP model in ``nep.txt`` format. nep_command Command for running the NEP executable. Defaults to ``'nep'``. Returns ------- Predicted dipoles, with shape (len(structures), 3). """ import shutil from os.path import join as join_path from subprocess import run from tempfile import TemporaryDirectory from calorine.nep import read_model, write_nepfile, write_structures with TemporaryDirectory() as directory: shutil.copy2(model_filename, join_path(directory, 'nep.txt')) model = read_model(model_filename) parameters = dict( prediction=1, mode=1, version=model.version, n_max=[model.n_max_radial, model.n_max_angular], cutoff=[model.radial_cutoff, model.angular_cutoff], basis_size=[model.n_basis_radial, model.n_basis_radial], l_max=[model.l_max_3b, model.l_max_4b, model.l_max_5b], neuron=model.n_neuron, type=[len(model.types), *model.types], ) write_nepfile(parameters, directory) file = join_path(directory, 'train.xyz') write_structures(file, structures) # Execute nep completed = run([nep_command], cwd=directory, capture_output=True) completed.check_returncode() # Read results dipoles = np.loadtxt(join_path(directory, 'dipole_train.out')) if len(dipoles.shape) == 1: dipoles = dipoles.reshape(1, -1) return dipoles[:, :3] def _check_components_polarizability_gradient(component: Union[str, List[str]]) -> List[int]: """ Verifies that the selected components are ok. """ allowed_components = { 'x': 0, 'y': 1, 'z': 2, } # Check if chosen components are ok if component == 'full': components_to_compute = [0, 1, 2] else: components_list = [component] if isinstance(component, str) else component components_to_compute = [] for c in components_list: if c in allowed_components.keys(): components_to_compute.append(allowed_components[c]) elif c == 'full': raise ValueError('Write ``component="full"`` to get all components.') else: raise ValueError(f'Invalid component {c}') assert len(components_list) == len(components_to_compute), \ 'Number of components to compute does not match.' return components_to_compute
[docs] def get_polarizability_gradient( structure: Atoms, model_filename: Optional[str] = None, displacement: float = 0.01, component: Union[str, List[str]] = 'full', debug: bool = False, ) -> np.ndarray: """Calculates the dipole gradient for a given structure using finite differences. A NEP model defined by a ``nep.txt`` file needs to be provided. This function computes the derivatives using the second-order central difference method with a C++ backend. Parameters ---------- structure Input structure. model_filename Path to NEP model in ``nep.txt`` format. Defaults to ``None``. displacement Displacement in Å to use for finite differences. Defaults to ``0.01``. component Component or components of the polarizability tensor that the gradient should be computed for. The following components are available: ``x`, ``y``, ``z``, ``full``. Option ``full`` computes the derivative whilst moving the atoms in each Cartesian direction, which yields a tensor of shape ``(N, 3, 6)``. Multiple components may be specified. Defaults to ``full``. debug Flag to toggle debug mode. Prints GPUMD output (if applicable). Defaults to ``False``. Returns ------- polarizability gradient with shape ``(N, C, 6)`` where ``C`` is the number of components chosen. """ if model_filename is None: raise ValueError('Model is undefined') model_type = _get_nep_contents(model_filename)[0]['model_type'] if model_type != 'polarizability': raise ValueError('A NEP model trained for predicting polarizability must be used.') components_to_compute = _check_components_polarizability_gradient(component) local_structure = structure.copy() polarizability_gradient = _polarizability_gradient_cpp( local_structure, model_filename, displacement=displacement, components=components_to_compute, debug=debug, ) return polarizability_gradient
def _polarizability_gradient_to_3x3(natoms, pg): """ Converts a polarizability gradient tensor with shape (Natoms, 3, 6) to (Natoms, 3, 3, 3). The 6 items in the polarizability gradient have the following order from GPUMD: xx, yy, zz, xy, yz, zx. """ gpumd_to_3x3_indices = np.array([ [0, 3, 5], [3, 1, 4], [5, 4, 2] ]) polgrad_3x3 = np.zeros((natoms, 3, 3, 3)) for i in range(3): for j in range(3): index = gpumd_to_3x3_indices[i, j] polgrad_3x3[:, :, i, j] = pg[:, :, index] return polgrad_3x3 def _polarizability_gradient_cpp( structure: Atoms, model_filename: str, displacement: float, components: List[int], debug: bool = False, ) -> np.ndarray: """Calculates the polarizability gradient with finite differences, using NEP_CPU. Parameters ---------- structure Input structure. model_filename Path to NEP model in ``nep.txt`` format. displacement Displacement in Å to use for finite differences. Defaults to ``0.01``. components List of components to compute. Integer values from 0 to 2 that corresponds to indices in the ordered list [x, y, z]. Index 1 corresponds to the derivative with regards to only the y positions of the atoms, and so forth. Returns ------- dipole gradient with shape ``(N, len(components), 3, 3)`` """ if displacement <= 0: raise ValueError('Displacement must be > 0 Å') # TODO possibly use components later to only move atoms in one cartesian direction local_structure = structure.copy() natoms = len(local_structure) cell, symbols, positions, masses = _get_atomic_properties(local_structure) nepy = _setup_nepy( model_filename, natoms, cell, symbols, positions, masses, debug ) pg = np.array( nepy.get_polarizability_gradient(displacement, components) ).reshape(natoms, 3, 6) # Convert to 3x3 polarizability_gradient = _polarizability_gradient_to_3x3(natoms, pg) return polarizability_gradient[:, components, :, :] # Only return the relevant components