Coverage for calorine / nep / model.py: 100%
420 statements
« prev ^ index » next coverage.py v7.13.1, created at 2026-01-15 13:48 +0000
« prev ^ index » next coverage.py v7.13.1, created at 2026-01-15 13:48 +0000
1from dataclasses import dataclass
2from itertools import product
4import numpy as np
6NetworkWeights = dict[str, dict[str, np.ndarray]]
7DescriptorWeights = dict[tuple[str, str], np.ndarray]
8RestartParameters = dict[str, dict[str, dict[str, np.ndarray]]]
11def _get_restart_contents(filename: str) -> tuple[list[float], list[float]]:
12 """Parses a ``nep.restart`` file, and returns an unformatted list of the
13 mean and standard deviation for all model parameters.
14 Intended to be used by the py:meth:`~Model.read_restart` function.
16 Parameters
17 ----------
18 filename
19 input file name
20 """
21 mu = [] # Mean
22 sigma = [] # Standard deviation
23 with open(filename) as f:
24 for k, line in enumerate(f.readlines()):
25 flds = line.split()
26 assert len(flds) != 0, f'Empty line number {k}'
27 if len(flds) == 2:
28 mu.append(float(flds[0]))
29 sigma.append(float(flds[1]))
30 else:
31 raise IOError(f'Failed to parse line {k} from {filename}')
32 return mu, sigma
35def _get_model_type(first_row: list[str]) -> str:
36 """Parses a the first row of a ``nep.txt`` file, and returns the
37 type of NEP model. Available types are `potential`, `potential_with_charges`,
38 `dipole`, and `polarizability`.
40 Parameters
41 ----------
42 first_row
43 First row of a NEP file, split by white space.
44 """
45 model_type = first_row[0]
46 if 'charge' in model_type:
47 return 'potential_with_charges'
48 elif 'dipole' in model_type:
49 return 'dipole'
50 elif 'polarizability' in model_type:
51 return 'polarizability'
52 return 'potential'
55def _get_nep_contents(filename: str) -> tuple[dict, list[float]]:
56 """Parses a ``nep.txt`` file, and returns a dict describing the header
57 and an unformatted list of all model parameters.
58 Intended to be used by the :func:`read_model <calorine.nep.read_model>` function.
60 Parameters
61 ----------
62 filename
63 input file name
64 """
65 # parse file and split header and parameters
66 header = []
67 parameters = []
68 nheader = 5 # 5 rows for NEP2, 6-7 rows for NEP3 onwards
69 base_line = 3
70 with open(filename) as f:
71 for k, line in enumerate(f.readlines()):
72 flds = line.split()
73 assert len(flds) != 0, f'Empty line number {k}'
74 if k == 0 and 'zbl' in flds[0]:
75 base_line += 1
76 nheader += 1
77 if k == base_line and 'basis_size' in flds[0]:
78 # Introduced in nep.txt after GPUMD v3.2
79 nheader += 1
80 if k < nheader:
81 header.append(tuple(flds))
82 elif len(flds) == 1:
83 parameters.append(float(flds[0]))
84 else:
85 raise IOError(f'Failed to parse line {k} from {filename}')
86 # compile data from the header into a dict
87 data = {}
88 for flds in header:
89 if flds[0] in ['cutoff', 'zbl']:
90 data[flds[0]] = tuple(map(float, flds[1:]))
91 elif flds[0] in ['n_max', 'l_max', 'ANN', 'basis_size']:
92 data[flds[0]] = tuple(map(int, flds[1:]))
93 elif flds[0].startswith('nep'):
94 version = flds[0].replace('nep', '').split('_')[0]
95 version = int(version)
96 data['version'] = version
97 data['types'] = flds[2:]
98 data['model_type'] = _get_model_type(flds)
99 else:
100 raise ValueError(f'Unknown field: {flds[0]}')
101 return data, parameters
104def _sort_descriptor_parameters(parameters: list[float],
105 types: list[str],
106 n_max_radial: int,
107 n_basis_radial: int,
108 n_max_angular: int,
109 n_basis_angular: int) -> tuple[DescriptorWeights,
110 DescriptorWeights]:
111 """Reads a list of descriptors parameters and sorts them into two
112 appropriately structured `dicts`, one for radial and one for angular descriptor weights.
113 Intended to be used by the :func:`read_model <calorine.nep.read_model>` function.
114 """
115 # split up descriptor by chemical species and radial/angular
116 n_types = len(types)
117 n = len(parameters) / (n_types * n_types)
118 assert n.is_integer(), 'number of descriptor groups must be an integer'
119 n = int(n)
121 m = (n_max_radial + 1) * (n_basis_radial + 1)
122 descriptor_weights = parameters.reshape((n, n_types * n_types)).T
123 descriptor_weights_radial = descriptor_weights[:, :m]
124 descriptor_weights_angular = descriptor_weights[:, m:]
126 # add descriptors to data dict
127 radial_descriptor_weights = {}
128 angular_descriptor_weights = {}
129 m = -1
130 for i, j in product(range(n_types), repeat=2):
131 m += 1
132 s1, s2 = types[i], types[j]
133 radial_descriptor_weights[(s1, s2)] = descriptor_weights_radial[m, :].reshape(
134 (n_max_radial + 1, n_basis_radial + 1)
135 )
136 angular_descriptor_weights[(s1, s2)] = descriptor_weights_angular[m, :].reshape(
137 (n_max_angular + 1, n_basis_angular + 1)
138 )
139 return radial_descriptor_weights, angular_descriptor_weights
142def _sort_ann_parameters(parameters: list[float],
143 ann_groupings: list[str],
144 n_neuron: int,
145 n_networks: int,
146 n_bias: int,
147 n_descriptor: int,
148 is_polarizability_model: bool,
149 is_model_with_charges: bool
150 ) -> NetworkWeights:
151 """Reads a list of model parameters and sorts them into an appropriately structured `dict`.
152 Intended to be used by the :func:`read_model <calorine.nep.read_model>` function.
153 """
154 n_ann_input_weights = (n_descriptor + 1) * n_neuron # weights + bias
155 n_ann_output_weights = 2*n_neuron if is_model_with_charges else n_neuron # only weights
156 n_ann_parameters = (
157 n_ann_input_weights + n_ann_output_weights
158 ) * n_networks + n_bias
160 # Group ANN parameters
161 pars = {}
162 n1 = 0
163 n_network_params = n_ann_input_weights + n_ann_output_weights # except last bias(es)
165 n_count = 2 if is_polarizability_model else 1
166 n_outputs = 2 if is_model_with_charges else 1
167 for count in range(n_count):
168 # if polarizability model, all parameters including bias are repeated
169 # need to offset n1 by +1 to handle bias
170 n1 += count
171 for s in ann_groupings:
172 # Get the parameters for the ANN; in the case of NEP4, there is effectively
173 # one network per atomic species.
174 ann_parameters = parameters[n1 : n1 + n_network_params]
175 ann_input_weights = ann_parameters[:n_ann_input_weights]
176 w0 = np.zeros((n_neuron, n_descriptor))
177 w0[...] = np.nan
178 b0 = np.zeros((n_neuron, 1))
179 b0[...] = np.nan
180 for n in range(n_neuron):
181 for nu in range(n_descriptor):
182 w0[n, nu] = ann_input_weights[n * n_descriptor + nu]
183 b0[:, 0] = ann_input_weights[n_neuron * n_descriptor :]
185 assert np.all(
186 w0.shape == (n_neuron, n_descriptor)
187 ), f'w0 has invalid shape for key {s}; please submit a bug report'
188 assert np.all(
189 b0.shape == (n_neuron, 1)
190 ), f'b0 has invalid shape for key {s}; please submit a bug report'
191 assert not np.any(
192 np.isnan(w0)
193 ), f'some weights in w0 are nan for key {s}; please submit a bug report'
194 assert not np.any(
195 np.isnan(b0)
196 ), f'some weights in b0 are nan for key {s}; please submit a bug report'
198 ann_output_weights = ann_parameters[
199 n_ann_input_weights : n_ann_input_weights + n_ann_output_weights
200 ]
201 w1 = np.zeros((1, n_neuron * n_outputs))
202 w1[0, :] = ann_output_weights[:]
203 assert np.all(
204 w1.shape == (1, n_neuron * n_outputs)
205 ), f'w1 has invalid shape for key {s}; please submit a bug report'
206 assert not np.any(
207 np.isnan(w1)
208 ), f'some weights in w1 are nan for key {s}; please submit a bug report'
210 if count == 0 and n_outputs == 1:
211 pars[s] = dict(w0=w0, b0=b0, w1=w1)
212 elif count == 0 and n_outputs == 2:
213 pars[s] = dict(w0=w0, b0=b0, w1=w1[0, :n_neuron], w1_charge=w1[0, n_neuron:])
214 else:
215 pars[s].update({'w0_polar': w0, 'b0_polar': b0, 'w1_polar': w1})
216 # Jump to bias
217 n1 += n_network_params
218 if n_bias > 1 and not is_model_with_charges:
219 # For NEP5 models we additionally have one bias term per species.
220 # Currently NEP5 only exists for potential models, but we'll
221 # keep it here in case it gets added down the line.
222 bias_label = 'b1' if count == 0 else 'b1_polar'
223 pars[s][bias_label] = parameters[n1]
224 n1 += 1
225 # For NEP3 and NEP4 we only have one bias.
226 # For NEP4 with charges we have two biases.
227 # For NEP5 we have one bias per species, and one global.
228 if count == 0 and n_outputs == 1:
229 pars['b1'] = parameters[n1]
230 elif count == 0 and n_outputs == 2:
231 pars['sqrt_epsilon_infinity'] = parameters[n1]
232 pars['b1'] = parameters[n1+1]
233 else:
234 pars['b1_polar'] = parameters[n1]
235 sum = 0
236 for s in pars.keys():
237 if s.startswith('b1') or s.startswith('sqrt'):
238 sum += 1
239 else:
240 sum += np.sum([np.array(p).size for p in pars[s].values()])
241 assert sum == n_ann_parameters * n_count, (
242 'Inconsistent number of parameters accounted for; please submit a bug report\n'
243 f'{sum} != {n_ann_parameters}'
244 )
245 return pars
248@dataclass
249class Model:
250 r"""Objects of this class represent a NEP model in a form suitable for
251 inspection and manipulation. Typically a :class:`Model` object is instantiated
252 by calling the :func:`read_model <calorine.nep.read_model>` function.
254 Attributes
255 ----------
256 version : int
257 NEP version.
258 model_type: str
259 One of ``potential``, ``dipole`` or ``polarizability``.
260 types : tuple[str, ...]
261 Chemical species that this model represents.
262 radial_cutoff : float | list[float]
263 The radial cutoff parameter in Å.
264 Is a list of radial cutoffs ordered after ``types`` in the case of typewise cutoffs.
265 angular_cutoff : float | list[float]
266 The angular cutoff parameter in Å.
267 Is a list of angular cutoffs ordered after ``types`` in the case of typewise cutoffs.
268 max_neighbors_radial : int
269 Maximum number of neighbors in neighbor list for radial terms.
270 max_neighbors_angular : int
271 Maximum number of neighbors in neighbor list for angular terms.
272 radial_typewise_cutoff_factor : float
273 The radial cutoff factor if use_typewise_cutoff is used.
274 angular_typewise_cutoff_factor : float
275 The angular cutoff factor if use_typewise_cutoff is used.
276 zbl : tuple[float, float]
277 Inner and outer cutoff for transition to ZBL potential.
278 zbl_typewise_cutoff_factor : float
279 Typewise cutoff when use_typewise_cutoff_zbl is used.
280 n_basis_radial : int
281 Number of radial basis functions :math:`n_\mathrm{basis}^\mathrm{R}`.
282 n_basis_angular : int
283 Number of angular basis functions :math:`n_\mathrm{basis}^\mathrm{A}`.
284 n_max_radial : int
285 Maximum order of Chebyshev polymonials included in
286 radial expansion :math:`n_\mathrm{max}^\mathrm{R}`.
287 n_max_angular : int
288 Maximum order of Chebyshev polymonials included in
289 angular expansion :math:`n_\mathrm{max}^\mathrm{A}`.
290 l_max_3b : int
291 Maximum expansion order for three-body terms :math:`l_\mathrm{max}^\mathrm{3b}`.
292 l_max_4b : int
293 Maximum expansion order for four-body terms :math:`l_\mathrm{max}^\mathrm{4b}`.
294 l_max_5b : int
295 Maximum expansion order for five-body terms :math:`l_\mathrm{max}^\mathrm{5b}`.
296 n_descriptor_radial : int
297 Dimension of radial part of descriptor.
298 n_descriptor_angular : int
299 Dimension of angular part of descriptor.
300 n_neuron : int
301 Number of neurons in hidden layer.
302 n_parameters : int
303 Total number of parameters including scalers (which are not fit parameters).
304 n_descriptor_parameters : int
305 Number of parameters in descriptor.
306 n_ann_parameters : int
307 Number of neural network weights.
308 ann_parameters : dict[tuple[str, dict[str, np.darray]]]
309 Neural network weights.
310 q_scaler : List[float]
311 Scaling parameters.
312 radial_descriptor_weights : dict[tuple[str, str], np.ndarray]
313 Radial descriptor weights by combination of species; the array for each combination
314 has dimensions of
315 :math:`(n_\mathrm{max}^\mathrm{R}+1) \times (n_\mathrm{basis}^\mathrm{R}+1)`.
316 angular_descriptor_weights : dict[tuple[str, str], np.ndarray]
317 Angular descriptor weights by combination of species; the array for each combination
318 has dimensions of
319 :math:`(n_\mathrm{max}^\mathrm{A}+1) \times (n_\mathrm{basis}^\mathrm{A}+1)`.
320 sqrt_epsilon_infinity : Optional[float]
321 Square root of epsilon infinity $\epsilon_\infty$ (only for NEP models with charges).
322 restart_parameters : dict[str, dict[str, dict[str, np.ndarray]]]
323 NEP restart parameters. A nested dictionary that contains the mean (mu) and standard
324 deviation (sigma) for the ANN and descriptor parameters. Is set using the
325 py:meth:`~Model.read_restart` method. Defaults to None.
326 """
328 version: int
329 model_type: str
330 types: tuple[str, ...]
332 radial_cutoff: float | list[float]
333 angular_cutoff: float | list[float]
335 n_basis_radial: int
336 n_basis_angular: int
337 n_max_radial: int
338 n_max_angular: int
339 l_max_3b: int
340 l_max_4b: int
341 l_max_5b: int
342 n_descriptor_radial: int
343 n_descriptor_angular: int
345 n_neuron: int
346 n_parameters: int
347 n_descriptor_parameters: int
348 n_ann_parameters: int
349 ann_parameters: NetworkWeights
350 q_scaler: list[float]
351 radial_descriptor_weights: DescriptorWeights
352 angular_descriptor_weights: DescriptorWeights
353 sqrt_epsilon_infinity: float = None
354 restart_parameters: RestartParameters = None
356 zbl: tuple[float, float] = None
357 zbl_typewise_cutoff_factor: float = None
358 max_neighbors_radial: int = None
359 max_neighbors_angular: int = None
360 radial_typewise_cutoff_factor: float = None
361 angular_typewise_cutoff_factor: float = None
363 _special_fields = [
364 'ann_parameters',
365 'q_scaler',
366 'radial_descriptor_weights',
367 'angular_descriptor_weights',
368 ]
370 def __str__(self) -> str:
371 s = []
372 for fld in self.__dataclass_fields__:
373 if fld not in self._special_fields:
374 s += [f'{fld:22} : {getattr(self, fld)}']
375 return '\n'.join(s)
377 def _repr_html_(self) -> str:
378 s = []
379 s += ['<table border="1" class="dataframe"']
380 s += [
381 '<thead><tr><th style="text-align: left;">Field</th><th>Value</th></tr></thead>'
382 ]
383 s += ['<tbody>']
384 for fld in self.__dataclass_fields__:
385 if fld not in self._special_fields:
386 s += [
387 f'<tr><td style="text-align: left;">{fld:22}</td>'
388 f'<td>{getattr(self, fld)}</td><tr>'
389 ]
390 for fld in self._special_fields:
391 d = getattr(self, fld)
392 # print('xxx', fld, d)
393 if fld.endswith('descriptor_weights'):
394 dim = list(d.values())[0].shape
395 elif fld == 'ann_parameters' and self.version == 4:
396 dim = (len(self.types), len(list(d.values())[0]))
397 else:
398 dim = len(d)
399 s += [
400 f'<tr><td style="text-align: left;">Dimension of {fld:22}</td><td>{dim}</td><tr>'
401 ]
402 s += ['</tbody>']
403 s += ['</table>']
404 return ''.join(s)
406 def remove_species(self, species: list[str]):
407 """Removes one or more species from the model.
409 This method modifies the model in-place by removing all parameters
410 associated with the specified chemical species. It prunes the species
411 list, the Artificial Neural Network (ANN) parameters, and the
412 descriptor weights. It also recalculates the total number of
413 parameters in the model.
415 Parameters
416 ----------
417 species
418 A list of species names (str) to remove from the model.
420 Raises
421 ------
422 ValueError
423 If any of the provided species is not found in the model.
424 """
425 for s in species:
426 if s not in self.types:
427 raise ValueError(f'{s} is not a species supported by the NEP model')
429 # --- Prune attributes based on species ---
430 types_to_keep = [t for t in self.types if t not in species]
431 self.types = tuple(types_to_keep)
433 # Prune ANN parameters (for NEP4 and NEP5)
434 if self.version in [4, 5]:
435 self.ann_parameters = {
436 key: value for key, value in self.ann_parameters.items()
437 if key in types_to_keep or key.startswith('b1')
438 }
440 # Prune descriptor weights
441 # key is here a tuple, (species1, species2)
442 self.radial_descriptor_weights = {
443 key: value for key, value in self.radial_descriptor_weights.items()
444 if key[0] in types_to_keep and key[1] in types_to_keep
445 }
446 self.angular_descriptor_weights = {
447 key: value for key, value in self.angular_descriptor_weights.items()
448 if key[0] in types_to_keep and key[1] in types_to_keep
449 }
451 # Prune restart parameters if they have been loaded
452 if self.restart_parameters is not None:
453 for param_type in ['mu', 'sigma']:
454 # Prune ANN restart parameters
455 ann_key = f'ann_{param_type}'
456 if self.version in [4, 5]:
457 self.restart_parameters[ann_key] = {
458 key: value for key, value in self.restart_parameters[ann_key].items()
459 if key in types_to_keep or key.startswith('b1')
460 }
462 # Prune descriptor restart parameters
463 for desc_type in ['radial', 'angular']:
464 key = f'{desc_type}_descriptor_{param_type}'
465 self.restart_parameters[key] = {
466 k: v for k, v in self.restart_parameters[key].items()
467 if k[0] in types_to_keep and k[1] in types_to_keep
468 }
470 # --- Recalculate parameter counts ---
471 n_types = len(self.types)
472 n_descriptor = self.n_descriptor_radial + self.n_descriptor_angular
474 # Recalculate descriptor parameter count
475 self.n_descriptor_parameters = n_types**2 * (
476 (self.n_max_radial + 1) * (self.n_basis_radial + 1)
477 + (self.n_max_angular + 1) * (self.n_basis_angular + 1)
478 )
480 # Recalculate ANN parameter count
481 if self.version == 3:
482 n_networks = 1
483 n_bias = 1
484 elif self.version == 4:
485 n_networks = n_types
486 n_bias = 1
487 else: # NEP5
488 n_networks = n_types
489 n_bias = 1 + n_types
491 n_ann_input_weights = (n_descriptor + 1) * self.n_neuron
492 n_ann_output_weights = self.n_neuron
493 self.n_ann_parameters = (
494 n_ann_input_weights + n_ann_output_weights
495 ) * n_networks + n_bias
497 # Recalculate total parameter count
498 self.n_parameters = (
499 self.n_ann_parameters
500 + self.n_descriptor_parameters
501 + n_descriptor # q_scaler parameters
502 )
503 if self.model_type == 'polarizability':
504 self.n_parameters += self.n_ann_parameters
506 def write(self, filename: str) -> None:
507 """Write NEP model to file in `nep.txt` format."""
508 with open(filename, 'w') as f:
509 # header
510 version_name = f'nep{self.version}'
511 if self.zbl is not None:
512 version_name += '_zbl'
513 elif self.model_type != 'potential':
514 version_name += f'_{self.model_type}'
515 f.write(f'{version_name} {len(self.types)} {" ".join(self.types)}\n')
516 if self.zbl is not None:
517 f.write(f'zbl {" ".join(map(str, self.zbl))}\n')
518 f.write('cutoff')
519 if isinstance(self.radial_cutoff, float) and isinstance(self.angular_cutoff, float):
520 f.write(f' {self.radial_cutoff} {self.angular_cutoff}')
521 else:
522 # Typewise cutoffs: one set of cutoffs per type
523 for i in range(len(self.types)):
524 f.write(f' {self.radial_cutoff[i]} {self.angular_cutoff[i]}')
525 f.write(f' {self.max_neighbors_radial} {self.max_neighbors_angular}')
526 f.write('\n')
527 f.write(f'n_max {self.n_max_radial} {self.n_max_angular}\n')
528 f.write(f'basis_size {self.n_basis_radial} {self.n_basis_angular}\n')
529 f.write(f'l_max {self.l_max_3b} {self.l_max_4b} {self.l_max_5b}\n')
530 f.write(f'ANN {self.n_neuron} 0\n')
532 # neural network weights
533 keys = self.types if self.version in (4, 5) else ['all_species']
534 suffixes = ['', '_polar'] if self.model_type == 'polarizability' else ['']
535 for suffix in suffixes:
536 for s in keys:
537 # Order: w0, b0, w1 (, b1 if NEP5)
538 # w0 indexed as: n*N_descriptor + nu
539 w0 = self.ann_parameters[s][f'w0{suffix}']
540 b0 = self.ann_parameters[s][f'b0{suffix}']
541 w1 = self.ann_parameters[s][f'w1{suffix}']
542 for n in range(self.n_neuron):
543 for nu in range(
544 self.n_descriptor_radial + self.n_descriptor_angular
545 ):
546 f.write(f'{w0[n, nu]:15.7e}\n')
547 for b in b0[:, 0]:
548 f.write(f'{b:15.7e}\n')
549 for v in w1[0, :]:
550 f.write(f'{v:15.7e}\n')
551 if self.version == 5:
552 b1 = self.ann_parameters[s][f'b1{suffix}']
553 f.write(f'{b1:15.7e}\n')
554 b1 = self.ann_parameters[f'b1{suffix}']
555 f.write(f'{b1:15.7e}\n')
557 # descriptor weights
558 mat = []
559 for s1 in self.types:
560 for s2 in self.types:
561 mat = np.hstack(
562 [mat, self.radial_descriptor_weights[(s1, s2)].flatten()]
563 )
564 mat = np.hstack(
565 [mat, self.angular_descriptor_weights[(s1, s2)].flatten()]
566 )
567 n_types = len(self.types)
568 n = int(len(mat) / (n_types * n_types))
569 mat = mat.reshape((n_types * n_types, n)).T
570 for v in mat.flatten():
571 f.write(f'{v:15.7e}\n')
573 # scaler
574 for v in self.q_scaler:
575 f.write(f'{v:15.7e}\n')
577 def read_restart(self, filename: str):
578 """Parses a file in `nep.restart` format and saves the
579 content in the form of mean and standard deviation for each
580 parameter in the corresponding NEP model.
582 Parameters
583 ----------
584 filename
585 Input file name.
586 """
587 mu, sigma = _get_restart_contents(filename)
588 restart_parameters = np.array([mu, sigma]).T
590 is_polarizability_model = self.model_type == 'polarizability'
591 is_charged_model = self.model_type == 'potential_with_charges'
593 n1 = self.n_ann_parameters
594 n1 *= 2 if is_polarizability_model else 1
595 n2 = n1 + self.n_descriptor_parameters
596 ann_parameters = restart_parameters[:n1]
597 descriptor_parameters = np.array(restart_parameters[n1:n2])
599 if self.version == 3:
600 n_networks = 1
601 n_bias = 1
602 elif self.version == 4:
603 # one hidden layer per atomic species
604 n_networks = len(self.types)
605 n_bias = 1
606 else:
607 raise ValueError(f'Cannot load nep.restart for NEP model version {self.version}')
609 ann_groups = [s for s in self.ann_parameters.keys() if not s.startswith('b1')]
610 n_bias = len([s for s in self.ann_parameters.keys() if s.startswith('b1')])
611 n_descriptor = self.n_descriptor_radial + self.n_descriptor_angular
612 restart = {}
614 for i, content_type in enumerate(['mu', 'sigma']):
615 ann = _sort_ann_parameters(ann_parameters[:, i],
616 ann_groups,
617 self.n_neuron,
618 n_networks,
619 n_bias,
620 n_descriptor,
621 is_polarizability_model,
622 is_charged_model)
623 radial, angular = _sort_descriptor_parameters(descriptor_parameters[:, i],
624 self.types,
625 self.n_max_radial,
626 self.n_basis_radial,
627 self.n_max_angular,
628 self.n_basis_angular)
630 restart[f'ann_{content_type}'] = ann
631 restart[f'radial_descriptor_{content_type}'] = radial
632 restart[f'angular_descriptor_{content_type}'] = angular
633 self.restart_parameters = restart
635 def write_restart(self, filename: str):
636 """Write NEP restart parameters to file in `nep.restart` format."""
637 keys = self.types if self.version in (4, 5) else ['all_species']
638 suffixes = ['', '_polar'] if self.model_type == 'polarizability' else ['']
639 columns = []
640 for i, parameter in enumerate(['mu', 'sigma']):
641 # neural network weights
642 ann_parameters = self.restart_parameters[f'ann_{parameter}']
643 column = []
644 for suffix in suffixes:
645 for s in keys:
646 # Order: w0, b0, w1 (, b1 if NEP5)
647 # w0 indexed as: n*N_descriptor + nu
648 w0 = ann_parameters[s][f'w0{suffix}']
649 b0 = ann_parameters[s][f'b0{suffix}']
650 w1 = ann_parameters[s][f'w1{suffix}']
651 for n in range(self.n_neuron):
652 for nu in range(
653 self.n_descriptor_radial + self.n_descriptor_angular
654 ):
655 column.append(f'{w0[n, nu]:15.7e}')
656 for b in b0[:, 0]:
657 column.append(f'{b:15.7e}')
658 for v in w1[0, :]:
659 column.append(f'{v:15.7e}')
660 b1 = ann_parameters[f'b1{suffix}']
661 column.append(f'{b1:15.7e}')
662 columns.append(column)
664 # descriptor weights
665 radial_descriptor_parameters = self.restart_parameters[f'radial_descriptor_{parameter}']
666 angular_descriptor_parameters = self.restart_parameters[
667 f'angular_descriptor_{parameter}']
668 mat = []
669 for s1 in self.types:
670 for s2 in self.types:
671 mat = np.hstack(
672 [mat, radial_descriptor_parameters[(s1, s2)].flatten()]
673 )
674 mat = np.hstack(
675 [mat, angular_descriptor_parameters[(s1, s2)].flatten()]
676 )
677 n_types = len(self.types)
678 n = int(len(mat) / (n_types * n_types))
679 mat = mat.reshape((n_types * n_types, n)).T
680 for v in mat.flatten():
681 column.append(f'{v:15.7e}')
683 # Join the mean and standard deviation columns
684 assert len(columns[0]) == len(columns[1]), 'Length of means must match standard deviation'
685 joined = [f'{s1} {s2}\n' for s1, s2 in zip(*columns)]
686 with open(filename, 'w') as f:
687 f.writelines(joined)
690def read_model(filename: str) -> Model:
691 """Parses a file in ``nep.txt`` format and returns the
692 content in the form of a :class:`Model <calorine.nep.model.Model>`
693 object.
695 Parameters
696 ----------
697 filename
698 Input file name.
699 """
700 data, parameters = _get_nep_contents(filename)
702 # sanity checks
703 for fld in ['cutoff', 'basis_size', 'n_max', 'l_max', 'ANN']:
704 assert fld in data, f'Invalid model file; {fld} line is missing'
705 assert data['version'] in [
706 3,
707 4,
708 5,
709 ], 'Invalid model file; only NEP versions 3, 4 and 5 are currently supported'
711 # split up cutoff tuple
712 N_types = len(data['types'])
713 # Either global cutoffs + max neighbirs, or typewise cutoffs + max_neighbors
714 assert len(data['cutoff']) in [4, 2*N_types+2]
715 data['max_neighbors_radial'] = int(data['cutoff'][-2])
716 data['max_neighbors_angular'] = int(data['cutoff'][-1])
717 if len(data['cutoff']) == 2*N_types+2:
718 # Typewise cutoffs: radial are even, angular are odd
719 data['radial_cutoff'] = [data['cutoff'][i*2] for i in range(N_types)]
720 data['angular_cutoff'] = [data['cutoff'][i*2+1] for i in range(N_types)]
721 else:
722 data['radial_cutoff'] = data['cutoff'][0]
723 data['angular_cutoff'] = data['cutoff'][1]
724 del data['cutoff']
726 # split up basis_size tuple
727 assert len(data['basis_size']) == 2
728 data['n_basis_radial'] = data['basis_size'][0]
729 data['n_basis_angular'] = data['basis_size'][1]
730 del data['basis_size']
732 # split up n_max tuple
733 assert len(data['n_max']) == 2
734 data['n_max_radial'] = data['n_max'][0]
735 data['n_max_angular'] = data['n_max'][1]
736 del data['n_max']
738 # split up nl_max tuple
739 len_l = len(data['l_max'])
740 assert len_l in [1, 2, 3]
741 data['l_max_3b'] = data['l_max'][0]
742 data['l_max_4b'] = data['l_max'][1] if len_l > 1 else 0
743 data['l_max_5b'] = data['l_max'][2] if len_l > 2 else 0
744 del data['l_max']
746 # compute dimensions of descriptor components
747 data['n_descriptor_radial'] = data['n_max_radial'] + 1
748 l_max_enh = data['l_max_3b'] + (data['l_max_4b'] > 0) + (data['l_max_5b'] > 0)
749 data['n_descriptor_angular'] = (data['n_max_angular'] + 1) * l_max_enh
750 n_descriptor = data['n_descriptor_radial'] + data['n_descriptor_angular']
752 is_charged_model = data['model_type'] == 'potential_with_charges'
753 # compute number of parameters
754 data['n_neuron'] = data['ANN'][0]
755 del data['ANN']
756 n_types = len(data['types'])
757 if data['version'] == 3:
758 n = 1
759 n_bias = 1
760 elif data['version'] == 4 and is_charged_model:
761 # one hidden layer per atomic species, but two output nodes
762 n = n_types
763 n_bias = 2
764 elif data['version'] == 4:
765 # one hidden layer per atomic species
766 n = n_types
767 n_bias = 1
768 else: # NEP5
769 # like nep4, but additionally has an
770 # individual bias term in the output
771 # layer for each species.
772 n = n_types
773 n_bias = 1 + n_types # one global bias + one per species
775 n_ann_input_weights = (n_descriptor + 1) * data['n_neuron'] # weights + bias
776 n_ann_output_weights = 2*data['n_neuron'] if is_charged_model else data['n_neuron'] # weights
777 n_ann_parameters = (
778 n_ann_input_weights + n_ann_output_weights
779 ) * n + n_bias
781 n_descriptor_weights = n_types**2 * (
782 (data['n_max_radial'] + 1) * (data['n_basis_radial'] + 1)
783 + (data['n_max_angular'] + 1) * (data['n_basis_angular'] + 1)
784 )
785 data['n_parameters'] = n_ann_parameters + n_descriptor_weights + n_descriptor
786 is_polarizability_model = data['model_type'] == 'polarizability'
787 if data['n_parameters'] + n_ann_parameters == len(parameters):
788 data['n_parameters'] += n_ann_parameters
789 assert is_polarizability_model, (
790 'Model is not labelled as a polarizability model, but the number of '
791 'parameters matches a polarizability model.\n'
792 'If this is a polarizability model trained with GPUMD <=v3.8, please '
793 'modify the header in the nep.txt file to enable parsing '
794 f'`nep{data["version"]}_polarizability`.\n'
795 )
796 assert data['n_parameters'] == len(parameters), (
797 'Parsing of parameters inconsistent; please submit a bug report\n'
798 f'{data["n_parameters"]} != {len(parameters)}'
799 )
800 data['n_ann_parameters'] = n_ann_parameters
802 # split up parameters into the ANN weights, descriptor weights, and scaling parameters
803 n1 = n_ann_parameters
804 n1 *= 2 if is_polarizability_model else 1
805 n2 = n1 + n_descriptor_weights
806 data['ann_parameters'] = parameters[:n1]
807 descriptor_weights = np.array(parameters[n1:n2])
808 data['q_scaler'] = parameters[n2:]
810 # add ann parameters to data dict
811 ann_groups = data['types'] if data['version'] in (4, 5) else ['all_species']
812 sorted_ann_parameters = _sort_ann_parameters(data['ann_parameters'],
813 ann_groups,
814 data['n_neuron'],
815 n,
816 n_bias,
817 n_descriptor,
818 is_polarizability_model,
819 is_charged_model)
821 data['ann_parameters'] = sorted_ann_parameters
822 if 'sqrt_epsilon_infinity' in sorted_ann_parameters.keys():
823 data['sqrt_epsilon_infinity'] = sorted_ann_parameters['sqrt_epsilon_infinity']
824 sorted_ann_parameters.pop('sqrt_epsilon_infinity')
825 data['ann_parameters'] = sorted_ann_parameters
827 # add descriptors to data dict
828 data['n_descriptor_parameters'] = len(descriptor_weights)
829 radial, angular = _sort_descriptor_parameters(descriptor_weights,
830 data['types'],
831 data['n_max_radial'],
832 data['n_basis_radial'],
833 data['n_max_angular'],
834 data['n_basis_angular'])
835 data['radial_descriptor_weights'] = radial
836 data['angular_descriptor_weights'] = angular
838 return Model(**data)